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Abstract

A novel procedure for the Navier–Stokes equations in the vorticity–velocity formulation is presented. The time

evolution of the vorticity is solved as an ODE problem on each node of the spatial discretization, using at each step

of the time discretization the spatial solution for the velocity field provided by a new PDE expression called the kine-

matic Laplacian equation (KLE). This complete decoupling of the two variables in a vorticity-in-time/velocity-in-space

split algorithm reduces the number of unknowns to solve in the time-integration process and also favors the use of

advanced ODE algorithms enhancing the efficiency and robustness of time integration. The issue of the imposition

of vorticity boundary conditions is addressed, as well as the details of the implementation of the KLE by isoparametric

finite element discretization. We shall see some validation results of the KLE method applied to the classical case of a

circular cylinder in impulsive-started pure-translational steady motion at several Reynolds numbers in the range

5 < Re < 180, comparing them with experimental measurements and flow visualization plates; and finally, a recent

result from a study on periodic vortex-array structures produced in the wake of forced-oscillating cylinders.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

During the last three decades several studies appeared concerning the representation of the Navier–

Stokes equations in terms of nonprimitive variables (namely the vorticity and the velocity potentials)

instead of the classical formulation in terms of the primitive variables velocity and pressure. This family

of approaches generally known as vorticity-stream function (x, w) methods have proven to be quite

effective. Especially for the case of incompressible two-dimensional flows, they offer the advantages of
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reducing the number of unknowns and of eliminating the incompressibility condition. They have also

been applied successfully to three-dimensional cases in spite of certain difficulties associated with the

specification of the boundary conditions for the velocity potentials in particular in multiply-connected

domains. A comprehensive study of this methods can be found in Quartapelle [1] where the crucial issue

of the boundary conditions is analyzed in detail. For more recent references the reader may consult
[2,3].

1.1. Hybrid vorticity–velocity formulation

More recently, together with those works on the vorticity-stream function formulation and as a natural

extension of them, a comparatively smaller number of studies were presented using a hybrid formulation in

terms of the primitive and nonprimitive variables velocity and vorticity. As several authors pointed out, the

vorticity–velocity (x, v) methods (as they are generally known) present some advantages compared with the
classical formulation on primitive variables or with the vorticity-stream function methods [1,4,5], namely:

� The pair of variables involved is particularly suited for a dynamic description of incompressible viscous

flows. The vorticity is governed by a well understood dynamical equation while the velocity, which

embodies the kinematical aspect of the problem, can be related to the vorticity by a simple elliptic

equation. In vortex-dominated flows the vorticity advection is a fundamental process determining the

dynamics of the flow, hence the vorticity–velocity description is closer to physical reality.

� The variety of boundary conditions that can be chosen for the velocity potentials due to the nonunique-
ness of the velocity representation is avoided since the velocity is supplemented by unique boundary

conditions.

� In some specific situations like that of external flows, boundary conditions at infinity are easier to imple-

ment for the vorticity than for the pressure.

� The noninertial effects only enter the solution procedure of the (x, v) formulation via the proper imple-

mentation of the initial and boundary conditions. Hence, the general applicability of an algorithm based

on the (x, v) formulation is enhanced because it is independent of whether or not the frame of reference

is inertial.
� The (x, v) formulation can match the equations of the boundary layer theory more easily than the prim-

itive variable formulation.

� The study of the inviscid limit of the Navier–Stokes equations to the Euler equations for incompressible

flows can be made easier by the elimination of the pressure variable.

� The most natural relation between vortex/particle methods and the Navier–Stokes equations is the (x, v)
formulation of the latter and a better understanding of vortex methods in the presence of no-slip bound-

aries could be eventually achieved.

The first uses of the (x, v) formulation of the incompressible Navier–Stokes equations were reported by

Fasel [6] who analyzed the stability of boundary layers in two dimensions and by Dennis, Ingham and

Cook [7] who derived a numerical method for computing steady-state three-dimensional flows. Both

approach were based on finite difference techniques. Since then several investigations have been conducted

on incompressible hybrid variable models using variations of the finite difference approach (e.g., see [8–10],

among others). A vorticity–velocity finite element solution of the three-dimensional compressible Navier–

Stokes equations have been presented by Guevremont et al. [11] who investigated the steady state flow in a

cubic cavity for several Mach numbers. More recently Clerxc [4], then Davies and Carpenter [12], intro-
duced pseudospectral procedures for the (x, v) formulation. Lo and Young [13] presented an arbitrary

Lagrangian–Eulerian (x, v) method for two-dimensional free surface flow, using finite difference discretiza-

tion for the free surface and finite element discretization for the interior of the domain.
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A disadvantage of the vorticity–velocity formulation, compared with the formulation in primitive vari-

ables is that in the most general three-dimensional case the (x, v) formulation requires a total of six equa-

tions to be solved instead of the usual four of the primitive-variable approach [4]. The objective of the

present study is to introduce a new method based on the (x, v) formulation which aims to tackle this

six-unknown question and to improve some other aspects of the numerical implementation of the (x, v)
approach. This alternative method is characterized by a complete decoupling of the two variables in a vor-

ticity-in-time/velocity-in-space split algorithm, thus reducing to three the number of unknowns to solve in

the time integration process. As we shall see later on, this time-space splitting also favors the use of adaptive

variable-stepsize/variable-order ODE algorithms which enhances the efficiency and robustness of the time

integration process.

A comprehensive study of the theoretical basis of the vorticity–velocity formulation in two and three

dimensions can be found in Chapter 4 of Quartapelle [1], including a series of theorems proving the equiv-

alence between the (x, v) formulation of the incompressible Navier–Stokes equations and their classical
formulation in primitive variables (velocity–pressure).
1.2. Vorticity boundary conditions

A common problem to all the methods based on nonprimitive or hybrid variables is the absence of

boundary conditions for the vorticity in presence of no-slip boundary conditions for the velocity. In the

case of the (x, w) formulation it also implies that the Poisson problem for the stream function with both

Dirichlet and Neumann conditions is overdetermined. There are several different ways of overcoming this
difficulty. Some earlier approaches like the boundary vorticity formula or the vorticity creation methods use

different techniques to define the boundary values of vorticity in terms of the stream function (or the veloc-

ity) by means of some approximate formula applied locally at the no-slip boundary. They are roughly

equivalent, however their implementation may differ remarkably depending on the type of discretization

used (see [1,14–16]). Two other options to circumvent the problem of vorticity boundary conditions are

either eliminating the vorticity variable from the formulation introducing a single biharmonic equation

for the stream-function, or regarding the two second-order partial differential equations for x and w as con-

stituting a system of two coupled equations, the coupling being engendered by the double specification on
the boundary for one variable [1].

An alternative viewpoint have been introduced by Quartapelle and Valz-Gris [17,18]. They showed that

in order to satisfy the no-slip boundary conditions for the velocity, the vorticity should be subject to an

integral constraint. This integral condition enforces the orthogonality of the abstract projection of the vor-

ticity field with respect to the linear space of the harmonic functions defined on the domain. This condition

is a direct consequence of the boundary conditions on the velocity, and ensure satisfaction of essential con-

servation laws for the vorticity. An important aspect of the integral vorticity conditions is their nonlocal

character: the vorticity distribution in the interior of the domain and on its boundary is affected at each
time by the instantaneous values of the tangential and normal components of the velocity along the entire

boundary. In other words, the distribution of the vorticity in the whole domain is constrained by the veloc-

ity boundary values. There are several ways for satisfying the vorticity integral conditions and performing

the underlying orthogonal projection. However, this orthogonal-projection operation may be generally

schematized as follows: First, a ‘‘wrong’’ vorticity field x0 is computed solving a time-discretized version

of the vorticity transport equation assuming arbitrary values on the no-slip boundary (for instance, homo-

geneous conditions). Then, the sought solution x is obtained by enforcing the orthogonality of x0 with

respect to the linear space of the harmonic functions. A detailed description of the mathematical basis
and the different numerical implementations of the orthogonal-projection operation of the vorticity field

for the (x, w) formulation can be found in [1].
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2. The kinematic Laplacian equation method

In this section, we shall introduce a new type of vorticity–velocity method based on a space-time splitting

of the problem that solves the time evolution of the vorticity as an ordinary differential equation on each

node of the spatial discretization. The input for the vorticity transport equation at each time-step is com-
puted from the spatial solution for the velocity field provided by a linear PDE expression in weak form

called the kinematic Laplacian equation (henceforth referred to as KLE). The input of the KLE being pro-

vided by the time integration of the vorticity. The issue of the vorticity boundary conditions on the no-slip

surface is dealt with by a sequence of two solutions of the KLE under a different set of velocity boundary

conditions. Thus, inside each time step, we perform two projectional operations of integral character ap-

plied on the velocity field which ensures that the vorticity evolves in time in a way compatible with the

time-dependent velocity boundary values.

2.1. The earlier form of the Laplacian approach: the constant-curl condition

In this section, we shall briefly describe some previous work which led to the development of the KLE.

The initial motivation for the development of an approach to solve flow around bodies based on the

Laplacian of the velocity field, as stated in [19], was to attain a mathematical expression that retains

the simplicity and linearity of the potential-flow equation, but can also take into account rotational ef-

fects induced by a rotational component of the motion of a moving reference frame in which the analysis

is performed. This roto-translational motion is typical of reference frames attached to moving bodies
such as turbine blades, missiles and projectiles, manoeuvring aircraft and submarines, and dispersing

seeds. It was originally intended to solve time-dependent no-separated flows around slender bodies.

The idea is based on a kinematic scheme that, in this earlier form, states the vanishing of the Laplacian

of the velocity field assuming incompressibility and constant curl. We start from the well-known vector

identity:
r2v ¼ $ � $v ¼ $ð$ � vÞ � $� ð$� vÞ: ð1Þ

By incompressibility the first term on the right-hand side vanishes. Thus, if, furthermore, the curl of the

velocity field is constant, the second term will also vanish, and we can obtain a solution for the velocity

field by solving $2v = 0 using a standard Galerkin method under the constraints $ � v ¼ 0 and

$� v ¼ const.

This initial form, which was called the constant-curl Laplacian equation (henceforth CCLE) [19] assumes

constant curl for the velocity field, and so is only valid so long as the boundary layer remains attached to
the surface of the body. Consequently, its field of application is limited. Nevertheless, there are some real

situations where these assumptions are fulfilled. For example, for wind turbine blades in normal operation

and for other slender, streamlined bodies following curved trajectories the alignment of the incoming flow

and the streamlined shape of the body prevents separation. The CCLE was successfully applied to the study

of the aerodynamic behavior of wind turbines [20]. The Laplacian equation was intended to work within

time-evolution schemes providing a quick, linear (but accurate if the assumptions are satisfied), spatial solu-

tion to the velocity field for successive time-steps.

2.2. The generalization of the Laplacian approach as a (x, v) method: the KLE

In order to overcome the limitations of the CCLE, we began to look for a generalized version that could

handle separated flows and moving frames with angular acceleration. We found that a generalized form of

the Laplacian expression (i.e., the KLE) could be advantageously used as the spatial counterpart of the

vorticity transport equation in a new type of vorticity–velocity method.
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Let us consider the full three-dimensional incompressible Navier–Stokes equation in vorticity form for a

flow domain X with solid boundary oX and external boundary of X in the far field, in a moving frame of

reference fixed to the solid,
ox

ot
¼ �v � $xþ mr2xþ x � $v: ð2Þ
If we have the velocity field v in X at a certain instant of time, we can rewrite (2) as
ox

ot
¼ �v � $ð$� vÞ þ mr2ð$� vÞ þ ð$� vÞ � $v ð3Þ
and solve for x at each point of the discretization of X by integration of (3) using an ODE solver.

Now, let us revisit (1) but this time impose a more general distribution for the vorticity field rather than

just the constant curl condition:
r2v ¼ $D� $� x; ð4Þ

$ � v ¼ D; ð5Þ

$� v ¼ x: ð6Þ

Here, x is the vorticity field in X given by (3) and D is the corresponding rate of expansion (i.e., the diver-

gence field). The KLE is essentially defined as a solution of (4) in its weak form under the simultaneous

constraints (5) and (6).

For incompressible cases, such as discussed here, D is simply set to zero. For compressible cases, D can

be a general distribution given by a solution analogous to (3) but for the divergence transport equation (i.e.,

the momentum equation in divergence form) together with a solution of the mass transport equation and
adding to (2) and (3) the terms eliminated by the application of the incompressibility condition. We shall

return to these ideas further on.

Now, provided that we can find a way of imposing on the velocity field the no-normal-flow condition
v � n ¼ 0 ð7Þ

and the no-slip condition,
v � s ¼ 0; ð8Þ

on the solid boundary oX in a way compatible with the vorticity distribution at that time, we obtain a

compatible solution for the velocity. Then, from this velocity field, we produce the right-hand side of
(3) required to advance the time-integration process to the next step. In order to impose the no-normal-

flow and no-slip conditions on oX together with the correspondingly compatible boundary conditions

on the vorticity, we designed a scheme based on two consecutive solutions of the KLE, which goes

as follows:

(i) given a velocity field for the previous time-step vn�1 (which is compatible with the correspondent vor-

ticity field xn�1), compute the next vorticity field ~xn by time integration of (3) at each node of the spa-

tial discretization. ~xn is still incompatible with the velocity boundary conditions on the solid surface
oX;

(ii) get ~xn
0 by setting homogeneous conditions on oX for ~xn (e.g., setting to zero the nodal values of ~xn on

oX once a discretization has been obtained);

(iii) compute a free-slip velocity field,~vn, by solving the KLE (i.e., solving (4) in its week form under the

simultaneous constraints 5,6, with D ¼ 0). This solution uses ~xn
0 as input, applying only the no-

normal-flow (v Æ n = 0) condition on oX with the normal derivative of the tangential velocity set to zero;
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(iv) from ~vn, compute the new vorticity field as xn ¼ $�~vn applying both the no-normal-flow (v Æ n = 0)

and the no-slip condition (v Æ s = 0) on oX. Thus, xn is a modified vorticity field produced in response

to the induced slip which is compatible with the velocity boundary conditions on oX;
(v) compute the final velocity field vn, by solving again the KLE but this time using xn as input and apply-

ing both the no-normal-flow and the no-slip condition on oX. In this way, vn gives the weak solution for
the velocity field at time-step n, which satisfies the time-dependent boundary conditions for the veloc-

ity, and simultaneously, its correspondent vorticity field xn is compatible with those velocity boundary

conditions.

In steps (iii)–(v), we apply the corresponding time-dependent, Dirichlet conditions for the velocity on

oX1, the external boundary of X in the far field.

It is interesting to note that all the physics of the problem is contained in step (i) and it is solved as an

ODE problem on the vorticity. Steps (ii)–(v) are concerned with the computation of a spatial solution for
the velocity field which is compatible with both: the time-evolved vorticity distribution obtained in (i) and

the time-dependent boundary conditions for the velocity. Setting homogeneous conditions on oX in step

(ii) makes the vorticity field consistent with the free-slip solution of the velocity field to be computed in

step (iii). Then, enforcing of the no-slip condition on oX in step (iv) gives the vorticity values in the

boundary in response to the induced slip. This is the analog of the vorticity-creation process typically

found in the early hybrid and nonprimitive methods mentioned above. Thus, we obtain our compatible

vorticity boundary conditions on the solid surface by sequence of two solutions of the KLE under a dif-

ferent set of velocity boundary conditions. These two projectional operations of integral character
applied on the velocity field (and performed inside each time step) ensure that the vorticity evolves in

time in a way compatible with the time-dependent velocity boundary values. The algorithmic sequence

defined in (i)–(v) is repeatedly performed inside the time-iteration process commanded by an adaptive

variable-stepsize ODE solver. As we shall see later, we tested a predictor–corrector (ABM-PECE) solver

and a fifth-order adaptive Runge–Kutta solver (see [21]). In both cases, solution is checked by the adap-

tive stepsize control by monitoring of local truncation error, which proved to be quite stable for this

application.

The algorithmic sequence defined in (i)–(v) has the advantage of producing a complete decoupling
between the time integration of the vorticity transport equation and the space solution of the Poisson equa-

tion for the velocity field. The linear spatial solution defined in (4)–(6) (i.e., the KLE) can be implemented in

just one variational formulation. As we shall see later, this implementation leads to a global matrix which is

independent both of time and of the particular constitutive relation of the continuum media. Then, this

matrix can be factorized at the moment of assembling and its triangular factors used as many times as

needed so long as we are using the same grid. As we said, this is so even for problems with different con-

stitutive relations because all the physics of the problem is taken into account only in the time-integration

process for the vorticity, i.e., the spatial solution is purely kinematic. Thus, the space solution performed at
each time step reduces to a pair of back-substitution processes where we simply change the right-hand side

vector of the linear system in order to impose consecutively the boundary conditions 7 and 8. This scheme

simplifies the issue of obtaining the vorticity in order to satisfy the boundary conditions on the velocity.

Note that it is not a purely local manipulation performed on the boundary, this double solution of the

velocity field is calculated over the entire domain involving two projectional operations of nonlocal

character.

2.3. Variational formulation for the KLE

To implement a variational formulation for the system (4)–(6) for the incompressible flow case, we start

by applying the standard Galerkin method to (4):
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Z
X
ð$ � $vÞ � dvdX ¼ �

Z
X
ð$� xÞ � dvdX; ð9Þ
where dv is an arbitrary, virtual velocity defined on X that vanishes on those sections of the boundary where

Dirichlet conditions are applied. Then, integrating by parts and applying Gauss theorem, and taking into

account that dv vanishes on oX1
Z
X
$v : $dvdX�

Z
oX

n � $v � dvdX ¼
Z
X
ð$� xÞ � dvdX: ð10Þ
Now, when the no-normal-flow and no-slip Dirichlet conditions are imposed on the solid boundary oX
(step (v)), dv is zero then the second term of the first member of (10) vanishes. For the case of no-

normal-flow and free-slip (step (iii)), just the normal component of dv is zero but the tangential components

of n � $v vanish due to free-slip. Hence, the second term of the first member of (10) is always zero, then
Z
X
$v : $dvdX ¼

Z
X
ð$� xÞ � dvdX: ð11Þ
One important property of the Laplacian operator is that its variational formulation yields a symmetric and

coercive bilinear form with good stability and convergence properties, and it has an equivalent minimiza-

tion formulation with associated functional
U ¼
Z
X

1

2
$v : $v dX�

Z
X
ð$� xÞ � v dX: ð12Þ
The next step is the imposition of the constraints 5 and 6. To this end, we explored several alternatives:
an augmented Lagrangian scheme, a Lagrangian multiplier mixed formulation and the penalty method.

As the kinematic Laplacian equation is intended to be applied successively in time, we discarded the

augmented Lagrangian option because its iterative nature would imply that one had to nest one loop

within another, and this would increase the computational cost. In our tests on this particular applica-

tion the Lagrangian multiplier formulation did not appear to show a drastic improvement compared to

the penalty method, and it affects the positive definiteness of the final bilinear form. On the other hand,

in normal application solving the momentum equation in primitive variables, the multiplier itself is

associated to the value of the pressure field, but for the KLE case, it has no physical meaning at
all but is just an auxiliary variable that does not give us any additional information. Nevertheless, with

a view to future applications we intend to conduct further exploration of a possible mixed formulation

in the context of the finite element method, based on discontinuous interpolation of the auxiliary vari-

ables combined with their condensation at elementary level. The penalty method, though less rigorous

than the alternatives with regard to the imposition of constraints, appears very well suited to this new

approach. It provides a solution in one step, it keeps the positive definiteness of the final bilinear form,

it has proven to work properly in this coupled scheme of two simultaneous constraints, it shows a wide

range of stability for the values of the penalty constant used to impose the constraints without inducing
ill-conditioning on the final stiffness matrix, as we shall see later, it produces results that are in good

agreement with experiments. Thus, we finally settled on the penalty method for the imposition of the

constraints, and we modified the functional (12) by adding the penalty terms related to the constraints

5 and 6
~U ¼ Uþ
Z
X

aD
2
ð$ � vÞ2 þ ax

2
ð$� v� xÞ � ð$� v� xÞdX; ð13Þ
where ~U is the modified functional and aD and ax the corresponding penalty constants. We satisfactorily

tested values of aD from 102 to 105 (choosing 103) and values of ax from 101 to 106 (choosing 102).
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Invoking the stationarity of ~U with respect to v,Z
Fig. 1.

and th
d~U ¼
X
$v : $dv� ð$� xÞ � dvþ aDð$ � vÞð$ � dvÞ þ axð$� v� xÞ � ð$� dvÞdX ¼ 0: ð14Þ
Reordering the terms, we finally have
Z
X
$v : $dvþ aDð$ � vÞð$ � dvÞ þ axð$� vÞ � ð$� dvÞdX ¼

Z
X
ð$� xÞ � dvþ axx � ð$� dvÞdX; ð15Þ
which is the expression for the variational formulation corresponding to the system (4)–(6) for the incom-
pressible flow case.
3. Numerical implementation of the KLE method

In this section, we shall describe the first numerical implementation of the KLE method using the finite

element method (FEM) for the spatial discretization and a predictor–corrector ODE solver for time inte-

gration. Those particular techniques were chosen for their convenience to the particular problems we were
dealing with. Nevertheless, other discretization techniques may be applied to the implementation of the

KLE method and we plan to explore different options in the future. In what follows, classical FEM tech-

niques are described for interpolation, integration, imposition of constraints and boundary conditions, and

calculation of derivatives; a comprehensive treatment of them can be found in [22,23].

3.1. Finite element implementation of the spatial solution

For the discretization of (15) in two-dimensional applications we used nine-node biquadratic isopara-
metric finite elements, which though ‘‘expensive’’ in computational terms possess a high convergence rate

and, due their biquadratic interpolation of the geometric coordinates, provide the additional ability of

reducing the so-called skin-error on curvilinear boundaries when compared to linear elements. Fig. 1 shows

the biquadratic interpolation functions (hk, k = 1, . . ., 9) of the nine-node isoparametric element on its
s
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natural system of coordinates (r, s) (for a detailed description of the isoparametric-element technique and

its corresponding interpolation functions see [22]).

Following the standard procedure for finite element discretization of the velocity field and its gradient we

have
v ¼
vx
vy

� �
¼ H � V̂e

; $v ¼

ovx
ox
ovx
oy

ovy
ox
ovy
oy

2
666664

3
777775 ¼ B � V̂e

; ð16Þ
where V̂
e
is the nine-node elemental array of nodal velocity values, H is the interpolation-function array

and B the array of interpolation-function derivatives,
V̂
e ¼

v̂1x
v̂1y

v̂2x

..

.

v̂9x
v̂9y

2
66666666664

3
77777777775
; H ¼ h1 0 h2 � � � h9 0

0 h1 0 � � � 0 h9

" #
; ð17Þ

B ¼

oh1

ox 0 oh2

ox � � � oh9

ox 0

oh1

oy 0 oh2

oy � � � oh9

oy 0

0 oh1

ox 0 � � � 0 oh9

ox

0 oh1

oy 0 � � � 0 oh9

oy

2
666664

3
777775: ð18Þ
The partial derivatives of the interpolation functions are given by
ohk

ox

ohk

oy

" #
¼ J�1 �

ohk

or

ohk

os

" #
; k ¼ 1; . . . ; 9; ð19Þ
where J is the elemental Jacobian matrix,
J ¼
P9

k¼1
ohk

or x̂
k P9

k¼1
ohk

or ŷ
kP9

k¼1
ohk

os x̂
k P9

k¼1
ohk

os ŷ
k

" #
ð20Þ
and (x̂k, ŷk) the geometrical coordinates of the nodes. For the divergence of the velocity field, we have
$ � v ¼ m � B � V̂e
; m ¼ 1 0 0 1½ �; ð21Þ
and for the velocity curl,
$� v ¼ r � B � V̂e
; r ¼ 0 �1 1 0½ �: ð22Þ
Following a similar procedure for the discretization of the vorticity field and its curl, we have
x ¼ x ¼ Hx � x̂e; $� x ¼
ox
oy

� ox
ox

" #
¼ Bx � x̂e; ð23Þ
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where x̂e is the nine-node elemental array of nodal vorticity values provided by the time-integration pro-

cess, Hx is the vorticity interpolation-function array and Bx the array of interpolation-function derivatives

for the computation of the vorticity curl,
x̂e ¼

x̂1

x̂2

..

.

x̂9

2
66664

3
77775; Hx ¼ h1 h2 � � � h9

� �
; ð24Þ

Bx ¼
oh1

oy
oh2

oy � � � oh9

oy

� oh1

ox � oh2

ox � � � � oh9

ox

" #
: ð25Þ
Now, considering (15) at each elemental subdomain (Xe) and substituting the velocity and vorticity fields

and their differentiated magnitudes by their discretized counterparts, we have
dV̂
eT � ðKe

L þ Ke
D þ Ke

xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ke

�V̂e ¼ dV̂
eT � ðRe

L þ Re
xÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Re

�x̂e; ð26Þ
where
Ke
L ¼

Z
Xe

BT � BdX ¼
Z 1

�1

Z 1

�1

BT � BjJ jdrds; ð27Þ

Ke
D ¼

Z 1

�1

Z 1

�1

aD BT �mT �m � BjJ jdrds; ð28Þ

Ke
x ¼

Z 1

�1

Z 1

�1

axB
T � rT � r � BjJjdrds; ð29Þ

Re
L ¼

Z 1

�1

Z 1

�1

HT � BxjJjdrds; ð30Þ

Re
x ¼

Z 1

�1

Z 1

�1

axB
T � rT �HxjJ jdrds; ð31Þ
and dV̂
e
is the elemental array of nodal values for the arbitrary function dv. The integrals involved in (27)

and (30) were solved by 3 · 3 Gaussian integration which is recommended for the biquadratic interpolation

used by nine-node isoparametric elements. For the integrals in (28), (29) and (31), we used 2 · 2 Gaussian

reduced integration which is recommended for the imposition of constraints in order to avoid locking prob-

lems. A comprehensive treatment of this subject can be found in [22].

Assembling the elemental matrices and arrays defined in (26) and taking into account that dv is arbitrary
and so it is its discretized counterpart dV̂ , we arrive to the global system
K � V̂ ¼ R � x̂: ð32Þ

In order to combine the power of convergence of the nine-node quadrilateral isoparametric element with

the geometrical ability of a triangular grid to create suitable nonstructured meshes with gradual and smooth

changes of density, we implemented what we called tri-quadrilateral isoparametric elements [19,20]. The

tri-quadrilateral elements consist of an assembling of three quadrilateral nine-nod isoparametric elements



Fig. 2. An example of a mesh of tri-quadrilateral finite elements obtained from a standard triangular discretization.
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in which each triangle of a standard unstructured mesh is divided into. Fig. 2 shows a schematic example of
a mesh of tri-quadrilateral finite elements obtained from the original triangular discretization.

Another advantage of the tri-quadrilateral scheme is that, by a previous condensation of the nodes

that lie inside the triangle, we can significantly reduce the number of nodes to solve in the final

system, subsequently recovering the values for the internal nodes from the solution on the noncondens-

able nodes. Fig. 3 shows a schematic view of the internal topology of the tri-quadrilateral element

including the in-triangle global numeration of the nodes and indicating the three nine-node subele-

ments (I)–(III).

The internal nodes 13–19 may be expressed in terms of nodes 1–12 which lay on the elemental boundary.
Following the classical procedure for elemental condensation (see [22]), we rewrite the system

Ke � V̂e ¼ Re � x̂e
Fig. 3.

isopara
Ke
aa Ke

ab

Ke
ba Ke

bb

� �
�

V̂
e

a

V̂
e

b

" #
¼

Re
a

Re
b

� �
� x̂e; ð33Þ
Schematic view of the internal topology of the tri-quadrilateral element. Subelements (I)–(III) are model by standard nine-node

metric interpolation. Numbers 1–19 indicate the in-triangle nodal numeration.
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where subindex a indicates the velocity degrees of freedom 1–24 associated with nodes 1–12 and subindex b

the velocity degrees of freedom 25–38 associated with nodes 13–19. From the second row of (33), we have,
V̂
e

b ¼ ðKe
bbÞ

�1 � Re
b|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

~R
e
b

�x̂e � ðKe
bbÞ

�1 � Ke
ba|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~K
e
ba

�V̂e

a; ð34Þ
substituting this result into the first row of (33) and reordering the terms,
Ke
aa � Ke

ab � ðKe
bbÞ

�1 � Ke
ba

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~K
e

�V̂e

a ¼ Re
a � Ke

ab � ðKe
bbÞ

�1 � Re
b

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~R
e

� x̂e; ð35Þ
which defines the new condensed system to solve. Assembling the elemental matrices and arrays defined in

(34) and (35), we finally arrive to the global condensed system
~K � V̂a ¼ ~R � x̂; ð36Þ

V̂b ¼ ~Rb � x̂� ~Kba � V̂a; ð37Þ

which gives the solution for the complete velocity field V̂ . This process of condensation allows us to reduce

the size of the system to solve in (36) to approximately a 40% of the original system (32). Neither
~K ; ~R; ~Rb nor ~Kba depend on x̂ nor t, so they can be computed once for a given mesh, stored and used
as many times as needed to compute the solution for V̂ . Matrix ~K is symmetric and positive definite, so

it lends to factorization by Cholesky decomposition and its triangular factor is repeatedly used to solve

V̂a through back-substitution.
3.2. Time integration of the vorticity transport equation

For the implementation of the time-integration procedure, we rewrite the two-dimensional vorticity

transport equation in a more convenient way
ox

ot
¼ F x; tÞ ¼ $� ðm$ � $v� v � $vð Þ; ð38Þ
We evaluate the right-hand side of (38) applying the corresponding differential operators onto the discrete

velocity field V̂ calculated following steps (ii)–(v) in Section (2.2). The normal procedure to calculate deriv-

atives on the nodes of a mesh of isoparametric elements consists in computing the derivatives in the Gauss-

ian points adjacent to each node and interpolate their results following several alternatives techniques. A

detailed description of the this procedure can be found in [22]. In our case, we used area-weighing interpo-
lation which prove to be very effective. The contribution of each Gaussian point to its corresponding node

depends on the constitution of the mesh and can be calculated at the moment of assembling. A set of arrays

that perform the differential operations is assembled simultaneously with the finite element matrices and the

right-hand side of (38) takes the form,
Fðx̂; tÞ ¼ Ĉurl � mD̂iv � V̂adv

� �
� Ĝ rad � V̂ ; ð39Þ
where Ĉurl, Ĝ rad and D̂iv are, respectively, the arrays that compute the curl, the gradient and the divergence

of the gradient, and V̂adv is simply a reordering of V̂ array to perform the product v � $v in the advective

term.
Neither Ĉurl, Ĝ rad nor D̂iv depend on x̂ nor t, so they can also be computed once for a given mesh, stored

and used as many times as needed to provide evaluation of (38) right-hand side for an advanced package

ODE solver. We choose a multivalue variable-order Adams–Bashforth–Moulton predictor–corrector
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(ABM-PECE) solver with adaptive stepsize control which proved to be quite efficient for this application.

We also tried a fifth order adaptive-stepsize Runge–Kutta algorithm with good results. For the first DNS

low-Reynolds-number applications of the KLE method, the function prove to be smooth enough for the

adaptive ABM-PECE algorithm to work very efficiently, in these smooth cases the predictor–corrector out-

performs other alternatives like the Bulirsch–Stoer method [21]. We shall discuss some future options for
the time-integration process further on.
4. Validation test

This section describes a validation test of the KLE method against the well-known problem of a semi-

infinite region of stationary fluid bounded by an infinite horizontal flat plate at y = 0, which is suddenly

given a velocity U in its own plane and thereafter maintained at that speed. This problem has an exact
analytic solution (see [24], Section 4.3, among others). The normalized velocity field described in a frame

of reference fixed to a plate moving in the �x direction is
Fig. 4.

param
uðy; tÞ
U

¼ erf
yffiffiffiffiffiffi
4mt

p
	 


; ð40Þ
where erf is the error function and y is the vertical coordinate. Fig. 4 shows a comparison between the

numerical results given by the KLE method for the velocity profile at successive values of the parameter

s ¼
ffiffiffiffiffiffi
4mt

p
and the correspondent exact solution given by (40). These results are in good agreement with

the exact solution lending confidence to the accuracy of the numerical simulations. This problem is closely

related with the key process of the KLE method, i.e., the vorticity production at a solid surface due to the

induced slip and its further propagation to the body of the fluid.
This validation test was repeatedly performed for a succession of uniformly-distributed unstructured

meshes, progressively refined, and the max-norm and mean-norm of the error was evaluated. Fig. 5 shows

the evolution of the error in function of the number of nodes, and Fig. 6 shows the evolution of the error in

function of the average value of the time-step.
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5. Some examples of application of the KLE method

We first show some results produced by the KLE method for the well-studied case of a circular cylinder

started impulsively and then subjected to steady translational motion through fluid otherwise at rest. Fig. 7

shows an example of a mesh of tri-quadrilateral elements used.

We shall see results at several values of Reynolds number, Re = Ud/m, where U is the horizontal trans-

lational speed of the cylinder, d its diameter, and m the kinematic viscosity of the fluid. Fig. 8 shows a
sequence plot of the vorticity isolines during one cycle of the vortex-shedding process in the wake of a

circular cylinder in steady motion at Re = 140 superimposed onto an arrow plot of the solenoidal
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Next, we compare our two-dimensional flow simulations on the range 5 < Re < 180 to experimental

measurements and flow visualizations. Fig. 10 shows velocity arrow-plots taken from our computations
superimposed on two aluminum-dust flow visualization plates due to Taneda (taken from [25]). In the range

5 < Re < 40 we measured the length (s) of the stationary twin-vortex wake from the rear stagnation point

on the solid surface to the confluence point at the tail of the wake, and we compared our results to the clas-

sical experiments of [26]. The results for the nondimensional length s/d against Re are shown in Fig. 11.

Overall the agreement between computations and experiments is very good.

As a second test case we considered the formation of the familiar Kármán vortex street behind a trans-

lating cylinder. Fig. 12 shows a comparison between a smoke-in-air flow visualization due to Zdravkovich

(taken from [25]) and the vorticity field produced by our numerical method at the same Reynolds number.
We show a symmetric gray-scale map so areas of both positive and negative vorticity appear clear while

zones of low vorticity appear dark. The smoke �signal� in the experimental photo, and the magnitude of
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4-1.5-1-0.500.511.5 -0.5 0 1 1.5 2.5 3 3.5 4-1.5-1-0.50.51.5



Fig. 10. Comparison of flow visualizations by Taneda and arrow-plots from numerical results for the twin-vortex wake behind a

cylinder at (a) Re = 13.05 and (b) Re = 26.

d s

Fig. 11. Comparison of the wake length calculated by the kinematic Laplacian equation method and the experimental measurements

by Taneda [26].
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vorticity displayed from the computation are, of course, not the same. Nevertheless, the correspondence in

the spacing, and even the shape of the vortices, lends considerable confidence to the fidelity of the numerical

simulations.



Fig. 12. Comparison of flow visualization of a Kármán vortex street behind a cylinder at Re = 100 by Zdravkovich with a gray scale

plot of the vorticity field produced by the kinematic Laplacian equation method at the same value of Reynolds number.
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As our third test case, we measured the dominant frequency, f, of vorticity fluctuations at a set of points
in the vortex street wake for the range of Reynolds numbers 50 < Re < 180, and we computed the corre-

sponding value of the Strouhal number (St = fd/U). The dominant frequency is the same for all the points

probed, and it is clearly defined at an early stage of wake formation. The amplitude of the fluctuations, on

the other hand, displays a transient state until it reaches its final, constant value somewhat downstream.

Plotting St vs. Re, as shown in Fig. 13, compares very favorably with the experiments presented by William-

son [27].

Finally, we have recently started a study on the formation, shedding and further evolution of periodic

vortex-array structures produced in the wake of forced-oscillating cylinders. Several qualitatively distinct
wake regimes were observed experimentally depending on the wavelength of the undulatory motion of
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Fig. 13. Comparison of the Strouhal number calculated by the kinematic Laplacian equation method and the experimental

measurements by Williamson [27] for Re < 180.



Fig. 14. Comparison of flow visualization of a P + S wake of an oscillating cylinder for Re = 140 by Williamson (private

communication to H. Aref) with a gray scale plot of the vorticity field produced by the KLE method at the same Reynolds number.
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the cylinder and the amplitude of the transverse undulations. For instance, for a certain range in the com-

bination of the wavelength/amplitude parameters, a pattern in which one pair and a single vortex are shed

in each cycle of the forced oscillation is produced. This pattern is commonly know as P + S (one pair plus

one single vortex). Fig. 14 shows a comparison of a gray scale plot of the vorticity field calculated by the

KLE method with an experimental laser-fluorescene photograph for an oscillating cylinder at Re = 140.

This photo was kindly provided by Prof. Williamson.
6. Concluding remarks and future prospects

We have introduced a mathematical-computational approach to solve the time-dependent flow in a non-

inertial frame of reference attached to a body in translational and/or roto-translational motion. The KLE

method was validated for two-dimensional DNS applications against experimental results for incompress-

ible flow around circular cylinders at low Reynolds number, finding very good agreement.
The basic formulation of the PDE system (4)–(6), i.e., the KLE, is three-dimensional. Then, the exten-

sion of the spatial solution provided by the KLE to three-dimensional problems is relatively straightfor-

ward. The theoretical basis of the vorticity–velocity formulation in three dimensions can be found in

Quartapelle [1], Chapter 4. In Quartapelle�s study, a series of theorems proves the equivalence between

the (x, v) formulation of the incompressible Navier–Stokes equations and their classical velocity–pressure

formulation. Hence, the main issue to deal with in a future three-dimensional implementation of the KLE

method is the algorithmic sequence to get a velocity field compatible with the vorticity boundary conditions.
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The fact that the velocity is supplemented by unique boundary conditions, simplifies this question substan-

tially. Contrarily, with the vorticity-stream function methods, the variety of boundary conditions that can

be chosen for the velocity potentials due to the nonuniqueness of the velocity representation is much more

complicated in three-dimensions than in two.

The KLE method has no special requirements on the rate-of-expansion distribution which is imposed. It
implies that the method can be extended to the analysis of compressible flows, provided that we find a way

of dealing with compatible boundary conditions for the rate-of-expansion in an analog way as we do with

the vorticity.

Since it is a new approach, we are still exploring KLE method capabilities to manage higher Reynolds-

number flows in DNS, and its potential to be extended to LES applications. The fact that the linear spatial

solution provided by the KLE is purely kinematic with all the nonlinearities and the material constitutive

properties remitted to the high-order adaptive time integration, favors the solution of problems with more

complex constitutive relations like non-Newtonian, plastic or viscoplastic flows. And the same argument
may be applied to the adoption of turbulence models for a future LES implementation of the method.

The KLE is based on a universal vectorial relation, so it can be used to solved any vector field provided

that we can solve a transport equation for its divergence and curl. This together with the fact that time is the

only iteration variable present, makes it possible to extend its application to other physical problems like

electromagnetic fields. It is also possible to couple the fluid analysis with other physical processes (e.g., heat

transfer or chemical reaction) by adding more equations to the ODE system, using grids with different

densities for problems with different scales.

Regarding the numerical implementation of the KLE method, the techniques mentioned above: Chole-
sky decomposition/back-substitution for the spatial solution and adaptive predictor–corrector solver for

time integration, prove to be very efficient for a two-dimensional low Reynolds number implementation

of the method in a sequential code. In view to solve problems in complex geometries in three-dimensional

applications which will require a substantial number of nodes (leading to large sparse systems) for the spa-

tial discretization, it will be necessary to turn to a parallel version of the KLE code. This can be done in a

relatively easy way: there are several parallel-program packages including parallel versions of the top ODE

solvers and evaluation of (38) right-hand side involves matrix products that can be easily paralellizable.

Concerning the solution of system (36), back-substitution is essentially a sequential process, then it should
be replaced by an iterative parallel linear solver. For a symmetric positive-definite matrix like ~K , the pre-

conditioned conjugate gradient method constitutes the first option, using the triangular factor from an

incomplete Cholesky decomposition as preconditioner to accelerate convergence (like before, this incom-

plete Cholesky factor can be computed once an used repeatedly). Regarding the time integration process,

the adaptive ABM-PECE solver works at its best for smooth functions, this situation could change when

we try to extend the KLE method to problems with more complex constitutive relations or to the analysis

of coupled physical processes where different time scales are likely too appear. If the function is no longer

smooth, a recommendable alternative to the ABM-PECE solver is the adaptive Bulirsch–Stoer algorithm
with modified midpoint integration and Richardson extrapolation [21]. If different time scales are present,

the possibility of stiffness arises and then a Bulirsch–Stoer solver with semi-implicit midpoint integration is

recommendable.

As it was mentioned above, the FEM and ABM-PECE techniques were used here for the first implemen-

tation of the KLE method. The generality of the KLE method allows further exploration of different tech-

niques for discretization in space and time, which is the author�s intention. A particular point to address is

the quality of the approximation of the spatial derivatives on the inter-elemental borders and the accuracy

of the area-weighing interpolation, specially for nodes that lie at the boundary. In spite that the results
shown here exhibit a satisfactory agreement with the experimental measurements, this last issue should

be specially taken into account in the choice of space-discretization techniques for future implementations

of the KLE method.
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Finally, we may emphasize KLE flexibility to manage different trajectories with translational and rota-

tional acceleration and its use of unstructured meshes. This method gives us a useful tool to study the vor-

tex structure of wakes for different body shapes and motions. We are using this tool to explore complex

vortex wake patterns in the wake of forced oscillating cylinders at low Reynolds number, focusing on

the process of splitting which characterizes the formation of P + S and similar structures. We hope to
use the numerical tool developed here to continue with such explorations in the future.
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